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Convection rolls in a fluid layer heated from below become unstable to disturbances 
in the form of waves travelling along the axis of the rolls when the Rayleigh number 
exceeds a critical value R,,. This transition to a time-dependent form of convection 
also occurs in the presence of a vertical magnetic field when the fluid is electrically 
conducting. In this paper the finite-amplitude properties of these waves are 
investigated for the values 0.1 and 0.025 of the Prandtl number. It is shown that the 
onset of oscillations reduces the heat transport by convection and that a mean flow 
in the direction of propagation is associated with the waves. Although the magnetic 
field has an inhibiting influence on steady convection, the inhibiting influence on the 
onset of oscillations is even stronger such that in some cases a higher heat transport 
is obtained in the presence of a magnetic field than in its absence. For similar reasons 
subcritical finite-amplitude onset of travelling- wave convection occurs for sufficiently 
large magnetic field strengths. Finally the stability of travelling-wave convection is 
investigated and the Rayleigh number R,,, for the transition to asymmetric wave 
convection is determined. 

1. Introduction 
One of the most interesting features of convection in a fluid layer heated from 

below is the oscillations that occur when the Prandtl number has values of the order 
unity or less. These oscillations assume the form of waves which travel along the 
horizontal axis of the convection rolls and which manifest themselves as a periodic 
transverse shift of the convection rolls. These waves are characterized by a strong 
vertical vorticity which vanishes for steady two-dimensional rolls. The simplest 
theory of the onset of the oscillations is obtained in the limit of vanishing Prandtl 
number with stress-free boundary conditions (Busse 1972). The analytical expres- 
sions clearly show that the frequency w of the oscillations is related to the 
circulation velocity of convection and the vertical vorticity is connected with the 
periodic transverse displacement of the rolls. In recent years the finite-amplitude 
properties of the waves and their stability have been explored. A systematic study 
of the dependence of these properties on the Prandtl number is described in the paper 
by Clever & Busse (1987) which contains references to related earlier work and which 
will be referred to in the following by CB. The present paper describes an extension 
of this work to the case when the fluid is electrically conducting and a vertical 
magnetic field is imposed. 

Convection in the presence of a magnetic field has been studied for a long time (see, 
for example, Chandrasekhar 1961) because of its importance in stars and in the 
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metallic cores of planets. More recently magnetic fields have been introduced in 
convection experiments in order to obtain an extra control parameter which can be 
easily varied (Libchaber, Fauvre & Laroche 1983; Fauve et al. 1984). But there have 
been relatively few studies of the finite-amplitude properties of convection in the 
presence of a magnetic field. We refer to the review article by Proctor & Weiss (1982) 
for a survey of the subject. The numerical analysis described in this paper is closely 
related to studies of steady convection rolls and their stability in the presence of a 
vertical field (Busse & Clever 1982). This paper will be referred to in the following by 
BC82. The stability boundaries of the convection rolls with respect to the oscillatory 
instability found in that study provides the starting point for the analysis of the 
finite-amplitude waves treated in this paper. 

As in BC82 the limit of high magnetic diffusivity h will be assumed which 
corresponds closely to the experimental situation since liquid metals typically have 
magnetic Prandtl numbers of the order of lop7. As a consequence the magnetic 
Reynolds number is vanishingly small and the main effect of the magnetic field is the 
increase in the dissipation of mechanical energy owing to Ohmic heating. It is thus 
not surprising that few novel dynamical phenomena are encountered in the presence 
of an imposed magnetic field and that the main effect of the latter is to increase the 
critical Rayleigh numbers for steady convection (except in the case of a horizontal 
field) and for the onset of oscillating convection rolls. There is a dual role, however, 
performed by the magnetic field. Since the magnetic field inhibits motion fluctuating 
in time even more than steady motions in the caaes considered in this paper, the 
curious effect results that  convection in the presence of a magnetic field may 
transport more heat at a given Rayleigh number than in its absence. Provided the 
magnetic field strength is sufficiently high we also find subcritical onset of finite- 
amplitude oscillatory convection. We did not find this phenomenon for low magnetic 
field strengths and we thus have not been able to confirm the prediction of this 
phenomenon by Fauve, Bolton & Brachet (1987) in the absence of a magnetic field. 

We must mention an error that has affected some of the results in our previous 
work, CB. In that analysis the mean flow that is induced by travelling waves of finite 
amplitude in the direction parallel to the axis of the rolls was neglected erroneously. 
After the appropriate corrections had been made, it was found that the results for the 
case of air (Prandtl number P = 0.71) remained unchanged within the limits of 
numerical accuracy. But in the cases of smaller P, deviations in the plot of various 
quantities become noticeable. We thus are including the corrected results in the 
present paper. The mean flow along the axis of the rolls grows proportionally to the 
square of the amplitude of oscillations and does not seem to have been noticed in any 
previous work. Since simulations of high-Rayleigh-number convection have usually 
assumed Prandtl numbers of the order unity, it is not surprising that this effect has 
not been found earlier. With decreasing Prandtl number the mean flow effect 
increases rapidly in magnitude and should become observable in the laboratory 
under the appropriate conditions. 

The paper starts with the formulation of the basic equations and an outline of the 
numerical methods in $2. In  $3 we discuss the properties of the numerical solutions 
for symmetric travelling-wave convection. In  $4  the transition to asymmetric waves 
is considered, and some concluding remarks are added in $5.  
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2. Mathematical formulation of the problem 
We consider a horizontal fluid layer of thickness d which is permeated by a 

homogeneous vertical magnetic field with flux density 4. The electrical conductivity 
of the fluid is sufficiently high such that the magnetic field tends to impede the 
motions of the fluid. But the magnetic diffusivity A is not low enough for the 
magnetic Reynolds number to reach values of the order unity or larger. This 
situation is realized in typical laboratory experiments with liquid metals. It also 
applies to processes in planetary cores of sufficiently small scale. 

In order to introduce a dimensionless description of the problem we use d as 
lengthscale, d2/K as timescale, ~ v / d ~ y g  as the scale of the temperature and &K/h as 
the scale for the magnetic field where the symbols K ,  A ,  v ,  y ,  g refer to the thermal 
diffusivity, the magnetic diffusivity, the kinematic viscosity, the coefficient of 
thermal expansion, and the acceleration of gravity respectively. The equations of 
motion in the Boussinesq approximation, the heat equation for the deviation 8 of the 
temperature from the static distribution and the equation of magnetic induction in 
the magnetohydrodynamic approximation assume the form 

K 
P-l - + u . V  u = -Vn+k8+V2U+Q-B*VB, ( 2 . 1 4  

v - u  = 0, (2 .1b)  

h (:t 1 
($+u .V)8  = Rk.u+V28, (2 .14  

( 2 . l d )  

where the Rayleigh number R,  the Prandtl number P and the Chandrasekhar 
number Q are defined by 

The temperatures and with < are prescribed at the upper and lower rigid 
boundaries of the layer ; po and p denote the density and the magnetic permeability 
of the fluid and the unit vector k is directed opposite to the direction of gravity. We 
shall use a Cartesian system of coordinates with the z-coordinate in the direction of 
k and the x-coordinate in the direction of the axis of the convection rolls. 

Since the velocity field u and the magnetic field B are solenoidal vector fields, the 
general representation 

u = V x (V x kq5) +V x k$+ Ui = B$+E$+ Ui, ( 2 . 2 ~ )  

(2 .2b )  

can be used, where i is the unit vector in the x-direction. Since we require that $, k, 
h and g are bounded functions whose averages over the (x, y)-plane vanish, the mean 
flow component Ui and the distortion of the mean magnetic field described by Gi 
must be written separately. In doing so we are anticipating that a mean flow 
component or mean distortion of the magnetic field in the y-direction does not occur. 
By taking the z-components of the curl and of the (curl)2 of the equation of motion 

A 
B = - k +  6h + t?g+ Gi 

K 
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( 2 . 1 ~ )  and by taking the z-components of ( 2 . 1 4  and of its curl, four equations for the 
scalar variables 4, $, h, g can be obtained, 

#+a. (u-VU)  = V4A2 4- A, 8+ Qk*VV2A2 h, (2.3a) 

= V2A2@+Qk.VA,g ,  (2.3b) 

( 2 . 3 ~ )  

-V2A2h = k . V A 2 # ,  (2.3d) 

-V2A2g = k - V A , $ .  (2.3e) 

As a fifth equation ( 2 . 3 ~ )  we have rewritten equation (2.1 c).  The operator A ,  denotes 
the horizontal Laplacian, A ,  E V 2 -  (k .V) ' .  Because we shall restrict the attention to 
the case K 4 h we have neglected all terms in the equations multiplied by ~ / h .  In  
addition we obtain the following equations for U and G by taking the average over 
the (x, y)-plane (indicated by a bar) of the 2-components of (2.1 a )  and (2.1 d )  : 

where the constant 71 denotes a possible mean pressure gradient in the x-direction. 
The limit of high magnetic diffusion, K < A,  offers the advantage that h can be 
immediately eliminated from the problem by inserting (2.3d) into ( 2 . 3 ~ ) .  The 
elimination of the variable g is not quite as straightforward since the boundary 
conditions for the magnetic field have to  be considered. In particular we shall focus 
on the case of rigid boundaries with perfect electrical and thermal conductivity, 

For steady rolls the functions $ and g vanish identically and the nat,ure of the 
magnetic boundary conditions is irrelevant. But for three-dimensional solutions @ 
and g do not vanish in general and the magnetic boundary conditions must be 
specified as soon as three-dimensional perturbations of the rolls are considered. The 
stability of rolls has been investigated in BC82. The oscillatory instability appeared 
as the most prominent feature in the case of small Prandtl numbers which is of 
primary interest for the applications of the theory. In  the present paper we analyse 
the travelling-wave solutions which are induced by the oscillatory instability. 

To obtain travelling-wave solutions of (2.3) together with boundary conditions 
(2.4) we expand the dependent variables into complete systems of functions 
satisfying the boundary conditions, 

q5 = X [Cizmn cos la&-ct) + azmn sin Za,(x- c t ) ]  
lmn cos may y 
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8 = lt [blmncosZa,(s-ct)+bzmnsinZa,(z-ct)] { zzi} sin nx(z + $1 
lmn 

cos may y 
@ = X [~~mncos la , ( z - c t )+c lm, s inZa , (~ -c t )~  

Zmn 

51 1 

(2.5b) 

( 2 . 5 ~ )  

The indices I and m run through all non-negative integers while n runs through all 
positive integers. The functions gn(z)  were introduced by Chandrasekhar (1961, p. 
635) and have also been defined in equation (4a) of Clever & Busse (1974). As in CB 
the upper functions in the wavy brackets of (2.5) must be chosen for odd 1, the lower 
functions for even 1. For the given expansion ( 2 . 5 ~ )  for @, (2 .3e)  can be solved subject 
to the boundary condition (2.4) for g, with the result 

The distortion Q of the mean field can be eliminated from the problem by integrating 
(2.3 f )  once. Using the expansion 

U = Z Un sin nn(z + $) ( 2 . 7 ~ )  
n 

for a stationary mean flow, we obtain as the equation for the coefficients Un 
__ 

un(n2n2++) = -P-l ( d l m p a l m k - C i Z m k u z m p )  (12a:+nz2a:)$laz~+~sinnx(z+$) 

ma 
2 

lmpk { 

__ 2 } 2 
( g p  9;)' dz - (&Zmp eZmk + aZmp CZmk) (z2a$ + m2ai) ( - 

x sin nn( z + $) ( g p  sin kn( z + $))' dz - - p (  n) , (2.7b) 

where the symbol p ( n )  denotes zero for even n and unity for odd n. 
After inserting (2 .5) ,  (2.6), ( 2 . 7 ~ )  into (2.3a, b, c ) ,  multiplying these equations with 

the functions &ijk, C D ~ , ~ ,  Yijk, !Pijr, dtjk, and @,, and averaging them over the fluid 
layer we obtain a system of nonlinear algebraic equations for the unknown 
coefficients dlmn etc. We shall not give these equations explicitly here since they are 
similar to those used in earlier work, for example in Busse & Frick (1985). In order 
to solve them by a Newton-Raphson iteration method we must truncate them. As 
in CB we shall neglect all coefficients dijk etc. and corresponding equations for indices 
satisfying the truncation condition 

i + j + k > % .  (2.8) 

By changing % the quality of the approximate solution obtained through this 
truncation procedure can be checked. A useful criterion is that sensitive properties 
of the solution such as the convective heat transport do not change by more than 2 
or 3 YO when % is replaced by 4- 1. The computational work can be reduced by 
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using the property that only coefficients with even 1 + k in ( 2 . 5 ~ )  and (2.5 b )  and with 
odd I + k in ( 2 . 5 ~ )  are involved in the travelling-wave solution bifurcating from the 
solution in the form of rolls. Finally the phase speed c has to be determined in the 
course of the Newton-Raphson procedure. By requiring alll = 0 we fix the phase 
of the travelling wave and thereby gain an extra equation which we use for the 
determination of c. 

As outlined in CB the special form (2.5) of the travelling-wave solutions originates 
from the symmetry of the oscillatory instability. (Note that for $ in CB the opposite 
of the selection rules mentioned below (2.4) of CB apply.) This form of the solution 
does not give rise to a Reynolds stress in the y-direction, but a finite mean flow in the 
x-direction can be generated. In the case of the travelling-wave solution bifurcating 
from the steady-roll solution this mean flow is symmetric about x = 0, i.e. only 
coefficients U, with odd n contribute in ( 2 . 7 ~ ) .  When the horizontal extent of the 
convection layer is very large in comparison with its height, the development of the 
mean flow will not produce a counteracting pressure gradient and 7 can be set equal 
to zero. But in layers of finite aspect ratio the sidewalls are likely to exert a 
constraining influence in that a pressure gradient will be set up such that the mean 
flow averaged over the z-coordinate vanishes. We thus shall distinguish two cases of 
mean flow: the unrestricted case (u) with 7 = 0;  and the restricted case ( T )  with 7 
being determined by the condition 

( 2 . 9 ~ )  

x fh sin n x ( z  + f) (gp sin kn(z + t))' dz P-' - . } n: 
(2.96) 

Fortunately, the differences between the two cases are relatively small in the region 
of the parameter space that has been investigated. For Prandtl numbers of the order 
unity or larger the mean flow given by (2.7) turns out to be so small that its neglect 
changes the results only imperceptibly. The results of CB for air thus remain 
unchanged within the line thickness of the relevant figures; but the results for 
P = 0.1 and for P = 0.025 require corrections, which are given in the following in 
the special case Q = 0. 

3. Travelling-wave convection 
One of the most remarkable features connected with the onset of travelling-wave 

convection are the substantial decreases in the slope of the convective heat transport 
as a function of the Rayleigh number at  low Prandtl numbers. While the heat 
transport hardly differed for rolls and travelling-wave convection in the case P = 

0.71 of CB, the change in the slope of the Nusselt-number curve rapidly magnifies as 
the Prandtl number decreases, as can be seen from a comparison of figure 1 for P = 
0.1 and figure 2 for P = 0.025. In these figures the Nusselt number has been plotted 
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NU - 

104 

R - 4  (Q) 
FIQURE 1. The Nusselt number Nu as a function of the Rayleigh number for different values of Q 
a t  P = 0.1. The combinations (2.6,2.2,0), (2.7,2.5, lo), (2.8,2.7,20), (2.9,2.8,30), (3.1,3.0,50) and 
(3.3,3.2,100) have been used for (au, a,, Q ) .  The solid lines for two-dimensional convection rolls have 
been extended up to R = RII. In  the caae Q = 100 this line has been extended by a dashed line. The 
Nusselt number for travelling-wave convection is given by a solid line in the restricted case (r) and 
by a dashed line in the unrestricted case (u). 

NU - 1 

10' 

FIGURE 2. Same as figure 1 but for P = 0.025. the combinations (2.9,2.2,0), (3.0,2.5, lo), (3.2,2.7, 
20), (3.3,2.9,30) and (3.4,3.0,50) have been used for (au, a,, &). In  the cases Q = 0, & = 50 the lines 
for two-dimensional convection rolls have been extended by dashed lines beyond the point of 
bifurcation. 

for two-dimensional steady rolls and for three-dimensional travelling waves for 
various values of &. At finite values of Q the change in slope becomes amplified such 
that an actual drop in the heat transport occurs. 

In  order to emphasize the general similarity of the curves, R - R, has been used as 
the abscissa, where R, is the Rayleigh number for onset of convection, as a function 
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0 103 5 x loa 
R -  RI*(Q) 

FIQUHE 3. Kinetic energy of the toroidal component of motion, as a function of the Rayleigh 
number for P = 0.1 and values of Q as indicated. The values of (ay, a,, R,,, &) are given by (2.6,2.2, 
2145,0), (2.9,2.8,4158,30), (3.1,3.0,6015,50) and (3.9,3.2, 11438,100) 

of Q and ay (see, for example, figures 13 and 14). Because of the presence of the 
skewed varicose instability (BC82) a slightly smaller value than the critical value 
a, has been chosen for ay. This procedure seems reasonable also because wavelengths 
larger than the critical value are typically observed in experiments. The inhibiting 
influence of the magnetic field on the onset of oscillations is even more pronounced 
than the stabilizing influence on the onset of convection. As a result there are ranges 
where the convective heat transport in the presence of a vertical magnetic field is 
larger than in its absence. This possibility occurs for example in the case P = 0.025 
for values of Q 5 30 for Rayleigh numbers just below the onset of travelling 
waves. 

As can be noticed in figure 1 the Nusselt-number curves exhibit a gap for the 
higher values of Q .  This gap is caused by the subcritical onset of the travelling-wave 
solution. A plot of the kinetic energy connected with the toroidal component of 
motion described by $ indicates this phenomenon more clearly, as shown in figure 3. 
While the toroidal component vanishes for two-dimensional rolls, it is a characteristic 
property of travelling wave convection. I n  fact, the increase in the toroidal kinetic 
energy 

(3.1 a) 

and the concurrent decrease of the poloidal kinetic energy 

E,,, = t<lV x (V x W)I2) ( 3 . l b )  

explain the decrease in the convective heat transport since only the poloidal 
component of motion contributes to the convective heat transport,. 

In the case of the supercritical onset of travelling waves the toroidal kinetic energy 
grows approximately proportional to R - R,, and a plot of (3.1 a )  divided by R - R,, 
is more revealing. Figure 4 shows such a plot for P = 0.025. The plots of the poloidal 
kinetic energy (3.1 b)  shown in figures 5 and 6 resemble those of the Nusselt number. 
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I ' ' ' " "  I 

30 10' 103 
R - R J Q )  

FIQURE 4. The quantity Etor/(R-RII)  is displayed for the indicated values of Q for P = 0.025. The 
dashed lines indicate deviations for the unrestricted case (u). The same solutions have been used 
as in figure 2. 

0.0121 , I I I , I I I 

10s 1 0 4  
R - 

FIGURE 5.  The kinetic energy of the poloidal component of motion &o, is shown as function of the 
Rayleigh number for several values of Q for P = 0.1. The same solutions as in figure 1 have been 
used. 

As mentioned above, the extraction of energy for the new degree of motion excited 
by the travelling- wave motion is responsible for the decreases in the poloidal kinetic 
energy. As in the case of the heat transport, the slope of the curves recovers and for 
large Rayleigh numbers the curves of three-dimensional convection tend to parallel 
those for the unstable two-dimensional convection rolls. For large Rayleigh numbers 
the convergence of the curves for different values of Q can be noted. The decrease of 
the circulation velocity in the rolls after the onset of instability also results in a 
decrease of the frequency of oscillation, as is evident from figures 7 and 8. In contrast 
to the quantities discussed above, the frequency shows a stronger influence of the 
mean flow conditions ( 2 . 9 ~ ) .  Since the mean flow is directed predominantly in 
the direction of the phase propagation of the travelling wave the frequency in the 
unrestricted case is larger than in the restricted case. At about the same place as 
where the Nusselt number and the poloidal kinetic energy resume their growth with 
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FIGURE 6. Same as figure 6 but for P = 0.025. The same solutions as in figure 2 have been used. 

30 

w 

10 

3 

Q 

FIGURE 7. The frequency w of oscillation as a function of the Rayleigh number for P = 0.1 for 
the same solutions that have been used in figure 1 .  

increasing Rayleigh number the frequency also starts to grow again. It will be of 
interest to find this non-monotonic dependence in experimental observations. 

The general similarity of travelling-wave convection with and without the 
presence of a vertical magnetic field is reflected in the appearance of the motion. Here 
we show just two examples, in figures 9 and 10, which demonstrate this similarity. 
The plots shown in CB in the case Q = 0 are hardly changed within the accuracy of 
the plots by the inclusion of the mean flow terms and can still be used for 
comparisons. In  the present figures also the temperature variation averaged over the 
depth of the layer and the streamlines of the toroidal component of the velocity field 
are shown for comparison. Because of the low Prandtl number, small-scale 
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w 

R -  MQ) 
FIGURE 8. Same as figure 7 but for P = 0.025. The same solutions as in figure 2 

have been employed. 

Y -  (b) 
X 

I 

FIGURE 9. (a) Lines of constant vertical velocity at  z = 0, w = n*w,,,/lO for n = -4, -3, . . . , 4 ;  ( b )  
lines of constant 

e - = fLed i ;  

2 

( c )  lines of constant 9. For (a+) P = 0.025, R = 4000, Q = 50, a, = 3.4, a, = 3.0 with the restricted 
mean flow. Lines with negative n are dashed, the line n = 0 is dotted, lines with positive n are solid. 
The wave propagates in the negative x-direction. 

contributions to the temperature field are more strongly damped than corresponding 
contributions to the velocity field. The temperature field not only looks much 
smoother than the vertical velocity, but the amplitude of the temperature wave is 
also slightly reduced. The transverse back and forth shifting of the rolls owing to the 
toroidal component of motion is clearly evident from the streamlines shown in part 
( c )  of the figures. Part ( c )  also explains the hook-like evolution of the crest of the 
waves which is obviously related to the closed streamlines appearing in the toroidal 
field as the result of nonlinear interactions. 

We finally consider the mean flow generated by the travelling-wave convection. In 
figures 11 and 12 the kinetic energy of the mean flow has been plotted for the two 
Prandtl-number cases. From the comparison with the results of figures 4 4  it is 
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FIGURE 10. Same as figure 9, but for P = 0.1, R = 8500, Q = 30, ay = 2.9, a, = 2.8. 

loo\= . 

30 1 o2 1 os 
R - Rll 

FIGURE 11. The kinetic energy of the mean flow in the restricted (solid lines) and unrestricted 
cases (dashed lines) for the same solutions as in figure 1 (P = 0.1). 

evident that the mean flow energy is always only a small fraction of the energy of the 
fluctuating velocity field. For Q = 0 the restricted and the unrestricted cases of mean 
flows give rather different results since the component U, sinx(z+&) dominates in the 
unrestricted case. As the magnetic field strength increases the component U, sin 
3n(z+;) becomes the main contributor to the mean flow and the energies in the 
restricted and unrestricted cases move closer. Usually the sign of the coefficient U, is 
such that the mean flow in the centreplane of the layer is directed in the direction of 
wave propagation. 
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30 1 o* 103 
R - 4 1  

FIGURE 12. As figure 11, but for the same solutions as in figure 2 (P  = 0.025). 

I I I 

- - 
104 - 

- 
- 

5000 - - 5  

R 

3000 - 

- 2  

1500 I I 1 I I I 4  I l l  

10 20 50 100 
Q 

519 

FIGURE 13. The Rayleigh numbers R,, R,,, R,,, (left ordinate) and the frequency ui (dashed line, 
right ordinate) of the asymmetric wave instability relative to the reference frame drifting with the 
travelling waves in case of restricted mean flow. The results obtained for the cases of figure 1 are 
indicated by the circles and have been connected by straight lines for better visualization. 
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I 1 I 1 

10 20 50 

FIGURE 14. Same as figure 13 but for the cases of figure 2. 
Q 

P = 0.71 uv = 2.2 P = 0.1, uY = 2.6 P = 0.025, uY = 2.9 

a, 2.0 2.3 2.6 1.9 2.2 2.5 1.9 2.2 2.5 

RIII(U) 1 1  473 8351 3236 2801 2778 2510 2973 2415 
a i ( u )  17.57 9.58 5.73 5.02 5.34 2.99 1.69 
RI,I(r) 10679 9384 7965 2977 2707 2710 2561 2482 2334 
U i ( d  16.04 12.09 9.18 4.65 4.39 4.67 1.59 1.47 

TABLE 1 .  Rayleigh numbers R,,, and imaginary parts a, of growth rates for the onset of 
asymmetric oscillation for Q = 0 

4. The stability of travelling-wave convection 
The stability of convection in the form of travelling waves has been studied in 

CB as a function of the Prandtl number. The additional influence of the vertical 
magnetic field does not affect the nature of the instability. Only the Rayleigh number 
R,,, for the onset of asymmetric waves is increased by roughly the same relative 
amount by which R,, is increased with increasing Q. This property is evident in 
figures 13 and 14 which display the transition Rayleigh numbers for P = 0.1 and 
P = 0.025. These figures also show the second frequency which characterizes the 
asymmetric wave component. This frequency ui is computed relative to the moving 
frame of reference with respect to which the symmetric travelling-wave convection 
is stationary. Only the case of restricted mean flow has been used in plotting R,,,. As 
Q increases, the values R,,, and ui for the case of unrestricted flow differ imperceptibly 
from those in the restricted case. 

For Q = 0 the Rayleigh number R,,, for onset of asymmetric oscillations and the 
corresponding frequency a, are given in table 1 for different combinations of the 
wavenumbers ay and a, characterizing travelling-wave convection. Values for both 
restricted and unrestricted mean flow have been listed. The difference is larger than 
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for the finite values of Q plotted in figures 13 and 14, but seldom exceeds 5%. 
Although the mean flow in either case has very little influence on the other properties 
of travelling-wave convection, in the case of air the onset of asymmetric oscillations 
depends rather sensitively on it. For this reason the case P = 0.71 has been included 
in the table. 

The mean flow has a stabilizing influence on the onset of asymmetric oscillations 
in general. The values of R,,, are thus higher in the unrestricted case than in the 
restricted case and agree quite well in the latter case with those of table 2 of CB which 
have been computed without inclusion of a mean flow. The only exception appears 
to be in the case of air for 01, = 2.0, where the value for the unrestricted flow seems 
to match the earlier value best. I n  this comparison i t  must be taken into account, 
however, that  4 = 8 was used in the computations of R,,, in CB, while 4 = 10 has 
been used in the present computations. There is another exceptional case included in 
table 1 which occurs for P = 0.025, a, = 1.9. A monotonic asymmetric instability 
with vanishing cri precedes the onset of asymmetric oscillations in this case when 
4 = 10 is used in the computations, while for 4 = 8 the oscillating instability comes 
first. But since this phenomenon occurs only for the rather low wavenumber a, = 1.9 
no special attention has been devoted to it a t  this point. 

The solution bifurcating from the travelling-wave solution in the case of the 
asymmetric wave instability can no longer be described as a steady solution with 
respect to a suitable frame of reference. An integration in time of the basic equation 
is required for the description of the bifurcating form of convection. This time 
integration can be carried out by assuming that the coefficients 8,,, etc. in (2.5) are 
functions of time. Solutions of this kind have been described in CB for the case of 
P = 0.71. They are hardly changed by the effects of a mean flow. Instead of the 
asymmetric travelling solution in air, however, a standing asymmetric oscillation 
develops when the Prandtl number is lowered. Figure 15 shows a typical example in 
the case P = 0.1. The travelling-wave component has virtually disappeared and the 
convection velocity field is essentially symmetric with respect to  certain planes x = 

const. The frequency of oscillation corresponds to cr,+w, where a, is the imaginary 
part of the growth rate of the asymmetric instability and w is the frequency of the 
travelling waves. The Nusselt number varies by about 20% throughout the cycle, 
but the time-averaged value does not differ much from the steady value of symmetric 
travelling waves. Because of the rather long time integrations that are necessary to  
reach a reasonably stationary state it becomes computationally expensive to obtain 
accurate solutions. No systematic study of the parameter dependence of standing 
asymmetric oscillations has yet been done. 

5. Concluding remarks 
In the limit of high magnetic diffusion that has been assumed in the present 

analysis, and which is typical for convection in liquid metals, the equation of 
magnetic induction gives rise to an additional linear term in the equation of motion 
which resembles the viscous friction term according to equations (2.3d, e ) .  In this 
sense the parameter Q increases the effective viscosity and thereby increases t,he 
effective Prandtl number and decreases the effective Rayleigh number. The Rayleigh 
number for the onset of convection rolls is thus increased and the nonlinear 
properties of the problem resemble those of a larger-Prandtl-number fluid with 
a lower or vanishing value of Q. For this reason the onset of the oscillatory instability 
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is even more delayed than the onset of convection and the same can be said for the 
onset of the asymmetric waves. 

While this reasoning explains the general similarity of the curves for different 
values of Q shown in figures 1, 2, 6, and 7, it is only roughly correct. Because the 
differential operators multiplied by Q in (2.3) are different from the friction 
operators, a growing magnetic field strength leads to an increase of the wavenumber 
a. There is also a qualitatively new effect in the form of the subcritical onset of finite- 
amplitude travelling waves which appears to be absent for small or vanishing values 
of Q. The imposition of a vertical magnetic field thus leads to some novel effects 
which cannot easily be anticipated from the non-magnetic limit Q = 0. 

We have already mentioned in the preceding section the monotonous mode of the 
asymmetric wave instability which is characterized by ui = 0. Even in those cases 
where the growth rate of the mode with ci = 0 is always less than that for the mode 
with ui =I= 0, we find that the Rayleigh numbers for the onset of these two modes 
approach each other as Q is increased. It is thus possible that the new instability may 
enter the picture for sufficiently large values of Q .  It may also be favoured a t  lower 
values of the Prandtl number. A similar phenomenon is observed for travelling waves 
in the presence of a horizontal magnetic field where it is more accessible to numerical 
computations. We therefore shall return to this instability in future work on the 
effect of a horizontal magnetic field on travelling-wave convection. 
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